Lecture 6 Infrared spectroscopy

Chemical Shift additivity estimates

Caution....estimates only!!

Chemical Shift - ¹H-NMR

Type of H	δ	Type of H	δ
(CH ₃) ₄ Si	0	ROH	0.5-6.0
RCH ₃	0.9	RCH ₂ OR	3.3-4.0
RCH ₂ R	1.2-1.4	R ₂ NH	0.5-5.0
R ₃ CH	1.4-1.7	O	
R ₂ C=CRC HR ₂	1.6-2.6	RCCH ₃	2.1-2.3
RC≡CH	2.0-3.0	O	
ArC H ₃	2.2-2.5	RCCH ₂ R	2.2-2.6
ArC H ₂ R	2.3-2.8		

Chemical Shift - ¹H-NMR

Type of H	δ	Type of H	δ
0			
RCOCH ₃	3.5-3.9	R ₂ C=C H ₂	4.6-5.0
O		R ₂ C=C HR	5.0-5.7
RCOCH ₂ R	4.1-4.7	ArH	6.5-8.5
RCH ₂ I	3.1-3.3	0	0.5-0.5
RCH ₂ Br	3.4-3.6	RCH	9.5-10.1
RCH ₂ CI	3.6-3.8	O C	
RCH ₂ F	4.4-4.5	RCOH	10-13

Whats with what??

Coupling Constants

Deuterium Oxide

- Heavy water is heavier than H₂O (duh?), having a density of 1.108 g/cm3. Heavy water ice will actually sink in light liquid water. The freezing and boiling points are also elevated somewhat, with heavy water freezing at 3.81° C (38.86° F) and boiling at 101.42° C (214.56° F) at standard atmospheric pressure.
- Heavy water toxicity manifests itself when about 50% of the water in the body has been replaced by D₂O. Prolonged heavy water consumption can cause death. The price is about \$700 per kilogram.

D₂O in H₂O

D₂O ice in H₂O

 D_2O ice in D_2O

Deuterium Oxide vs Water

Property	D ₂ O (Heavy water)	H ₂ O (Light water)
Freezing point (°C)	3.82	0.0
Boiling point (°C)	101.4	100.0
Density at STP (g/mL)	1.1056	0.9982
Dynamic viscosity (at 20°C, mPa·s)	1.25	1.005
Heat of fusion (cal/mol)	1,515	1,436
pH (at 25°C)	7.41 (sometimes "pD")	7.00
Cost per kilogram	~\$700.00	~\$0.002 for tap ~\$10.00 for Fiji!!?

Chemical Exchange

- Hydrogens on electronegative atoms such as Oxygen and Nitrogen
 - Undergo rapid "exchange" and often give only a relatively broad singlet due to "averaging"
 - These hydrogens also exchange (equilibrate)
 with Deuterium in D₂O and "disappear" from the spectrum

$$H_3C$$
 C
 CH_3
 H_3C
 CH_2
 CH_2
 CH_2
 CH_2
 CH_2

Common ¹H-nmr Solvents

- DCCl₃
- CCl₄
- \circ (CD₃)₂SO
- D₂OC₆D₆

http://www.imdb.com/title/tt0059263/

http://www.telegraph.co.uk/news/7664351/A-new-mission-for-the-hero-of-Telemark.html

Vemork Hydroelectric Plant

Chemistry 328N

¹H Chemical Shifts

¹³C Chemical Shifts

¹³C-NMR chemical shifts

Type of Carbon	Chemical Shift (δ)	Type of Carbon	Chemical Shift (δ)
RCH ₃	0-40	C-R	110-160
R <mark>C</mark> H₂R	15-55		110-100
R₃ <mark>C</mark> H	20-60	Q	
R <mark>C</mark> H₂I	0-40	R <mark>C</mark> OR	160-180
R <mark>C</mark> H ₂ Br	25-65	ပူ	
RCH ₂ Cl	35-80	RCNR ₂	165-180
R₃ <mark>C</mark> OH	40-80	ပူ	
R ₃ COR	40-80	R <mark>C</mark> OH	175-185
$R^{\mathbb{C}} \equiv {\mathbb{C}} R$	65-85	ပ္ ပူ	
R_2 \subset C R_2	100-150	R <mark>C</mark> H, RCR	180-210

¹³C NMR Spectra

Figure 6-1.2. 25 MHz ¹³C NMR spectrum of diphenyl selenide in CDCl₃.

13C-nmr Spectroscopy

• Each nonequivalent ¹³C gives a different, resolved signal

The DEPT Experiment

- In the hydrogen-decoupled mode, information on spinspin coupling between ¹³C and attached hydrogens is lost
- Distortionless Enhancement by Polarization Transfer (DEPT) is an NMR technique for determining whether
 ¹³C signals are from CH₃, CH₂, CH, or quaternary carbons
- DEPT is an instrumental trick that provides the means to acquire this information

The DEPT method

- DEPT uses a complex series of pulses in both the ¹H and ¹³C ranges, with the result that CH₃, CH₂, and CH signals exhibit different phases;
 - signals for CH₃ and CH carbons are recorded as positive signals (odd numbers of H)
 - signals for CH₂ carbons are recorded as negative signals (even numbers of H)
 - quaternary carbons give no signals in the DEPT method (zero H)

Broadband decoupled ¹³C nmr spectrum

¹³C-NMR (a) and DEPT (b) spectra of isopentyl acetate

An Unknown ©

Empirical formula C_4H_9 MW =114

Whatzit??

¹³C-NMR Spectroscopy review

- Each nonequivalent ¹³C gives a different signal
- Low abundance means weak signals
- C-C splitting is insignificant
- C-H splitting is big and complex so it is "turned off" by "decoupling"
- Range of Chemical Shifts is large compared to H
- Some Coupling info can be recovered by DEPT
- Integrals of ¹³C spectra are not useful except under very special circumstances
- Mnemonic device.... OPEN???

Practice Problems

https://edisciplinas.usp.br/pluginfile.php/255042/mod_resource/content/2/OC307-Solving_NMR.pdf

https://www.khanacademy.org/science/organicchemistry/spectroscopy-jay/proton-nmr/v/proton-nmr-practice-2

https://www.khanacademy.org/science/organic-chemistry/spectroscopy-jay/proton-nmr/v/proton-nmr-practice-3

http://pnorris.people.ysu.edu/index_files/page0016.html

http://orgchemboulder.com/Spectroscopy/Problems/index.shtml